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Abstract. We find the covariant deformed Heisenberg algebra and the Laplace–Beltrami operator
on the extendedh-deformed quantum plane and solve the Schrödinger equations explicitly for
some physical systems on the quantum plane. In the commutative limit the behaviour of a quantum
particle on the quantum plane becomes that of the quantum particle on the Poincaré half-plane, a
surface of constant negative Gaussian curvature. We show that the bound state energy spectra for
particles under specific potentials depend explicitly on the deformation parameterh. Moreover, it
is shown that bound states can survive on the quantum plane in a limiting case where bound states
on the Poincaŕe half-plane disappear.

1. Introduction

In recent years, quantum groups and quantum spaces have attracted much attention from both
physics and mathematics [6, 15, 18]. They are of relevance to the problem of the quantization
of spacetime. Quantum spaces are often adopted as models for the microscopic structure of
physical spacetime and their effects on physics have been investigated by many authors. In
particular,q-deformed quantum spaces are one of those quantum spaces whose effects have
been intensively studied (see, e.g., [2, 8, 13]).

The purpose of this work is to make a formulation of quantum mechanics on theh-
deformed quantum plane and to investigate the effects of the quantum plane on the energy
spectra. Theh-deformed quantum plane [1, 7, 12] is a counterpart of theq-deformed one in
the set of quantum planes which are covariant under those quantum deformations ofGL(2)
which admit a central determinant. It seems that it has more geometrical structures than the
q-deformed one. Theh-deformed quantum plane is known to be a noncommutative version
of the Poincaŕe half-plane and its geometry has been discussed in [5].

In section 2, we review the geometry of theh-deformed quantum plane which is to be
used later. In section 3, theh-deformed Heisenberg algebra is constructed from the skew
derivatives of Wess–Zumino. This algebra is covariant under the quantum groupGLh(2). It is
worthy of being compared with the deformed Heisenberg algebra used by Aghamohammadi
[1], which is not covariant under the quantum group. Also it is comparable with the deformed
Heisenberg algebra, for example, by Loreket al [13], which has no such quantum group
symmetry because there is none compatible with the reality condition. We also construct the
Laplace–Beltrami operator on the quantum plane. The operator has the Laplace–Beltrami
operator of the Poincaré half-plane as its commutative limit. In section 4, we construct
the Schr̈odinger equations for some physical systems on the quantum plane and find their
solutions explicitly, taking values in the noncommutative algebra. In the commutative limit
the behaviour of a quantum particle on the quantum plane becomes that of the quantum particle
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on the Poincaŕe half-plane, a surface of constant negative Gaussian curvature. The bound state
energy spectra for particles under specific potentials are shown to depend explicitly on the
deformation parameterh. This result is comparable with that of [3]. Moreover, it is shown
that bound states can survive on the quantum plane in a limiting case where bound states on
the Poincaŕe half-plane disappear.

2. Theh-deformed quantum plane

2.1. The covariant differential structure

The h-deformed quantum plane is an associative algebra generated by noncommuting
coordinatesx andy such that

xy − yx = hy2 (2.1.1)

whereh is a deformation parameter. The quantum groupGLh(2) is the symmetry group of
theh-deformed plane as isGLq(2) for theq-deformed quantum plane [4, 7, 12].

The covariant differential calculus on the quantum plane can be found [1] by the method
of Wess and Zumino [21]. The results to be used in this work can be summarized as follows.
The module structure of the 1-forms is given by the relations

x dx = dx x − h dx y + h dy x + h2 dy y x dy = dy x + h dy y

y dx = dx y − h dy y y dy = dy y
(2.1.2)

and the structure of the algebra of forms is determined by the relations

dx2 = h dx dy dx dy = −dy dx dy2 = 0. (2.1.3)

It is important to notice that the associative algebra generated byx, y has an involution given
by x† = x, y† = y providedh ∈ iR. The involution has a natural and simple extension to the
differential calculus and the differential is real:

(df )† = df †. (2.1.4)

This is contrary to the case considered by Loreket al [13]. Dual to these forms are a set of
twisted derivations which when considered as operators satisfy the relations

[x, ∂x ] = −1 +hy ∂x [x, ∂y ] = −hx ∂x − h2y ∂x − hy ∂y
[y, ∂x ] = 0 [y, ∂y ] = −1 +hy ∂x
[∂x, ∂y ] = h ∂2

x .

(2.1.5)

In [1] the momentum operators are defined as follows:

px = −ih̄ ∂x py = −ih̄ ∂y. (2.1.6)

However, if one requires that they be Hermitian, the deformed Heisenberg algebra given by
(2.1.5) does not satisfy the hermiticity. This problem of nonhermiticity has been observed by
Aghamohammadi [1]. We shall resolve it in subsection 3.1.

The extendedh-deformed quantum plane is an associative algebraA generated byx, y
satisfying equation (2.1.1) and their inversesx−1, y−1. The extendedh-deformed quantum
plane is known to be a noncommutative version of a Poincaré half-plane [5]. SinceA is a
unital involution algebra withx andy Hermitian andh ∈ iR, the elements

u = xy−1 + 1
2h v = y−2 (2.1.7)
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are also Hermitian. Their commutation relation becomes

[u, v] = −2hv. (2.1.8)

This choice of generators is useful in studying the commutative limit.
Now it is straightforward to see that

u du = du u− 2h du u dv = dv u− 2h dv

v du = du v v dv = dv v
(2.1.9)

and

du du = dv dv = 0 du dv = −dv du. (2.1.10)

In this work, however, it is more convenient to use the ‘Stehbein’ [16].

2.2. The Stehbein

The Stehbeinθa are defined as

θ1 = v−1 du θ2 = −v−1 dv. (2.2.1)

Then theθa satisfy the commutation relations

f θa = θaf (2.2.2)

for anyf ∈ A as well as the relations

(θ1)2 = 0 (θ2)2 = 0 θ1θ2 + θ2θ1 = 0. (2.2.3)

Also we have

dθ1 = −θ1θ2 dθ2 = 0. (2.2.4)

Moreover, the Stehbein satisfy

θa(eb) = δab (2.2.5)

if we introduce the derivationsea = adλa with

λ1 = 1

2h
v λ2 = 1

2h
u. (2.2.6)

It is easy to see that the derivations satisfy

e1u = v e1v = 0

e2u = 0 e2v = −v.
(2.2.7)

The derivationsea define, in the commutative limit, vector fields

Xa = lim
h→0

ea (2.2.8)

with

X1 = ṽ ∂ũ X2 = −ṽ ∂ṽ (2.2.9)

whereũ, ṽ are the commutative limits of the generatorsu,v of the algebraA. The algebraAwith
the differential calculus defined by the relations (2.2.3) can be regarded as a noncommutative
deformation of the Poincaré half-plane [5]. In this case, a metric is defined on the tensor
product of theA-module of 1-forms by

g(θa ⊗ θb) = δab. (2.2.10)

The metric satisfies

g(du⊗ du) = g(dv ⊗ dv) = v2 g(du⊗ dv) = g(dv ⊗ du) = 0. (2.2.11)

In terms of the commutative limit̃θa of the Stehbeinθa, the metric is given in the commutative
limit by the line element

ds2 = (θ̃1)2 + (θ̃2)2 = ṽ−2(dũ2 + dṽ2) (2.2.12)

which is the metric of the Poincaré half-plane [10].
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3. Theh-deformed Heisenberg algebra and the Laplace–Beltrami operator

3.1. Theh-deformed Heisenberg algebra

In this subsection, we shall construct a deformed Heisenberg algebra on the extendedh-
deformed quantum plane. First, we shall introduce∂u, ∂v such that

∂uu = ∂vv = 1. (3.1.1)

We assume the following ansatz:

∂x = (∂xu) ∂u + (∂xv) ∂v ∂y = (∂yu) ∂u + (∂yv) ∂v. (3.1.2)

The coefficients can be calculated using equation (2.1.5),

∂xu = y−1 ∂xv = 0

∂yu = −xy−2 − hy−1 ∂yv = −2y−3
(3.1.3)

and thus we have

∂u = y∂x ∂v = − 1
2(xy

2 − 2hy3) ∂x − 1
2y

3 ∂y. (3.1.4)

Then∂u, ∂v satisfy not only equation (3.1.1) but also

∂uv = ∂vu = 0. (3.1.5)

Now that

∂ux = y ∂uy = 0

∂vx = − 1
2(xy

2 − 2hy3) ∂vy = − 1
2y

3
(3.1.6)

we can verify the relations

∂u = (∂ux) ∂x + (∂uy) ∂y ∂v = (∂vx) ∂x + (∂vy) ∂y. (3.1.7)

Moreover, it is straightforward to see that

d = dx ∂x + dy ∂y = du ∂u + dv ∂v. (3.1.8)

From equations (2.1.5) and (3.1.7), it follows that

[u, ∂u] = −1 + 2h∂u [u, ∂v] = 2h∂v

[v, ∂u] = 0 [v, ∂v] = −1

[∂u, ∂v] = 0.

(3.1.9)

Now we introduce the momentum operators temporarily by

pu = −ih̄∂u pv = −ih̄∂v (3.1.10)

then we have the following commutation relations:

[u, pu] = ih̄ + 2hpu [u, pv] = 2hpv
[v, pu] = 0 [v, pv] = ih̄

[pu, pv] = 0.

(3.1.11)

These relations satisfy the Jacobi identities. It is worth noticing that the commutation relations
are invariant under the transformation

p′u = pu p′v = pv + αv−1 (3.1.12)
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for any complex numberα. Moreover, equation (3.1.11) satisfies the hermiticity if we define
the Hermitian adjoints of the momentum operators as follows:

p†
u = pu p†

v = pv + βv−1 (3.1.13)

for any complex numberβ.
From now on, we chooseβ = 2ih̄ in equation (3.1.13). In fact, not only does this

choice guarantee the hermiticity of the Laplace–Beltrami operator to be constructed in the next
subsection, but also it is consistent with that in the commutative limit [10, 17] once one defines
the inner product〈f, g〉 of two functions on the Poincaré half-plane to be〈f, g〉 = ∫ f̄ g dµ
with the measure dµ = ṽ−2 dũ dṽ. It follows then thatp†

ṽ
= pṽ + 2ih̄ṽ−1 and the Hermitian

momentum operator is notpṽ butPṽ ≡ pṽ + ih̄ṽ−1. Similarly, the momentum operator is not
pv butPv ≡ pv + ih̄v−1 in the quantum plane. This is not unusual either in nonflat spaces [11]
or in quantum spaces [8]. In fact, the second term ofPv reflects the nonflatness of the space.
From equation (3.1.12), it follows that the Hermitian momentum operatorsPu ≡ pu andPv
satisfy the followingh-deformed Heisenberg algebra on the(u, v)-quantum plane which is of
the same form as in equation (3.1.11):

[u, Pu] = ih̄ + 2hPu [u, Pv] = 2hPv
[v, Pu] = 0 [v, Pv] = ih̄

[Pu, Pv] = 0.

(3.1.14)

In this case, the Hermitian adjoints ofpx andpy in equation (2.1.6) are given by

p†
x = px p†

y = py + 2hpx (3.1.15)

and the operator such aspy is not Hermitian, in contrast to the assumption in [1]. In fact,
the Hermitian momentum operators arePx ≡ px andPy ≡ py + hpx . Now we can write
equation (2.1.5) as

[x, px ] = ih̄ + hypx [x, py ] = −hxpx − h2ypx − hypy
[y, px ] = 0 [y, py ] = ih̄ + hypx
[px, py ] = hp2

x.

(3.1.16)

It is straightforward to see that the relations in the above equation (3.1.16) satisfy the hermiticity.
Moreover, a lengthy calculation shows that they are covariant under the quantum groupGLh(2).
Now equation (3.1.16) yields immediately theh-deformed Heisenberg algebra on the(x, y)-
quantum plane

[x, Px ] = ih̄ + hyPx [x, Py ] = ih̄h− hxPx + h2yPx − hyPy
[y, Px ] = 0 [y, Py ] = ih̄ + hyPx
[Px, Py ] = hP 2

x .

(3.1.17)

From the covariance of equation (3.1.16) it follows easily that this deformed Heisenberg
algebra is also covariant under the quantum groupGLh(2). The deformed Heisenberg algebra
is comparable with that in [1] which is not covariant under the quantum groupGLh(2).

3.2. The Laplace–Beltrami operator

From now on, we shall concern the(u, v)-plane. From equation (2.2.3), the differential algebra
overA is the sum ofA and theA-modules�1, �2 of 1-forms and 2-forms:

�(A) = A⊕�1⊕�2. (3.2.1)
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As in the classical geometry, we can define the star operator∗ on�(A) with the metric given
in equation (2.2.10) by

∗1= θ1θ2 ∗θ1θ2 = 1
∗θ1 = θ2 ∗θ2 = −θ1.

(3.2.2)

Then for θ ≡ −λaθa, we have∗θ = −λ1θ
2 + λ2θ

1 and as in classical geometry the star
operator∗ satisfies

∗∗ = (−1)p(2−p) (3.2.3)

wherep denotes the order of the form to be acted on. Now we defineδ : �p → �p−1 by

δ$ = (−1)2(p+1)+1 ∗ d ∗$. (3.2.4)

From equation (2.2.4), it follows then that forf ∈ A
δf = 0 δ(θ1θ2) = 0
δθ1 = 0 δθ2 = −1.

(3.2.5)

Moreover, a straightforward calculation yields

δ(f θ1θ2) = e2f θ
1− e1f θ

2 δθ = λ2

δ(f θ) = (e1f )λ1 + (e2f )λ2 + f λ2 δ(θf ) = λ1e1f + λ2e2f + λ2f.
(3.2.6)

If we define the Laplace–Beltrami operator1 to be

−1 = δd + dδ (3.2.7)

then it is easy to see that for anyf ∈ A
1f = e2

1f + e2
2f + e2f. (3.2.8)

From equation (2.2.9), in the commutative limit, it follows that1 goes over to

1̃ ≡ ṽ2(∂2
ũ + ∂2

ṽ ) (3.2.9)

which is the Laplace–Beltrami operator on the Poincaré half-plane [10]. Thus this result is
consistent with that of [5] that the extendedh-deformed quantum plane is a noncommutative
version of the Poincaré half-plane, a surface of constant negative Gaussian curvature.

Now we claim that the operatorse1 ande2 are nothing butv ∂u and−v ∂v, respectively.
In fact, the first claim can be seen from mathematical induction together with the following
observations:

e1u = v ∂uu e1u
−1 = v ∂uu−1

e1v = v ∂uv e1v
−1 = v ∂uv−1 (3.2.10)

and
e1(uf ) = v ∂u(uf ) e1(u

−1f ) = v ∂u(u−1f )

e1(vf ) = v ∂u(vf ) e1(v
−1f ) = v ∂u(v−1f )

(3.2.11)

where we have used the identity that∂uf = u−1f + u ∂u(u−1f ) − 2h ∂u(u−1f ). Similarly,
the second claim can also be proved.

Moreover, from the above claims it follows that

1 = v2(∂2
u + ∂2

v ) = −
1

h̄2v
2(p2

u + p2
v). (3.2.12)

It is straightforward to see that1 is Hermitian for the choice ofβ = 2ih̄ in equation (3.1.13).
Moreover, the Laplace–Beltrami operator1 can be written as

1 = 1√|g| ∂µ
√
|g|gµν ∂ν (3.2.13)

as expected, wheregµν = g(duµ ⊗ duν) for uµ = (u, v) and|g| = det(gµν).



Quantum mechanics on theh-deformed quantum plane 2097

4. Quantum mechanics on the quantum plane

4.1. Free particles

Now we shall discuss quantum mechanics on theh-deformed quantum plane. We assume
[14, 17] that the Schrödinger equation of a particle with massm in a potentialV is given by

ih̄ ∂t9 = Ĥ9 (4.1.1)

whereĤ = −(h̄2/2m)1+V (u, v)and timet is regarded as an extra commuting coordinate. As
in the commutative case, it is enough to find the solutions of the time-independent Schrödinger
equation.

First let us solve the time-independent Schrödinger equation of a free particle of massm

− h̄
2

2m
19(u, v) = E9(u, v). (4.1.2)

Let us put9(u, v) = g(v)f (u) andλ = −2mE/h̄2. Then we have

v2(∂2
u + ∂2

v ) g(v)f (u) = λg(v)f (u). (4.1.3)

We can decompose this equation into two equations without difficulty using the relations in
equations (3.1.5) and (3.1.9)

∂2
uf (u) = −C2f (u) (4.1.4)

and

v2 ∂2
v g(v) = (C2v2 + λ)g(v) (4.1.5)

whereC is a constant. In the case whenC = 0, it follows that up to constant multiplication
f = 1 and for any numberα 6= 0

g(v) = vα (4.1.6)

with E = −h̄2α(α − 1)/2m. However, this solution is not normalizable in the commutative
limit. Thus we suppose thatC 6= 0. From the commutation relations in equation (3.1.9), it
follows that for any constanta

∂u eau = 1− e−2ah

2h
eau (4.1.7)

where eau = 1 +au+ 1
2! (au)

2 + · · · is a formal power series. Thus the solution of the equation
in (4.1.4) is given by

f (u) = eiku (4.1.8)

with

C2 =
[

1− e−2ikh

2|h|
]2

(4.1.9)

which goes over tok2 in the commutative limith → 0. On the other hand, since
the commutation relations betweenv, ∂v and ṽ, ∂ṽ are of the same form, we can regard
equation (4.1.5) as an ordinary differential equation although the solutions of the quantum
plane are formal. Letλ = −κ2 − 1

4. Now, if we putz = iCv andg(v) = √zφ(z), then the
equation (4.1.5) becomes the Bessel differential equation

φ′′(z) +
1

z
φ′(z) +

(
1 +

κ2

z2

)
φ(z) = 0. (4.1.10)
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Thus the solution of the differential equation in (4.1.5) is given by

g(v) = √vKiκ(|C|v). (4.1.11)

The energy eigenvaluesE = −(h̄2/2m)λ = (h̄2/2m)(κ2 + 1
4) for κ > 0 constitute a

continuous spectrum. The largest lower bound state withκ = 0 is not allowed since the
normalized wavefunction vanishes identically in the commutative limit [10]. In the limit the
Green function is known to have a cut on the positive real axis in the complex energy plane
with a branch point atE = h̄2/8m. The Bessel functions in these solutions seem to be related
to the ‘cylindrical’ topology of the Poincaré half-plane [20].

For the classical mechanics, the equations of motion with the Hamiltonian

H = ṽ2

2m
(P 2

ũ + P 2
ṽ ) (4.1.12)

yield the geodesic equation on the Poincaré half-plane:

¨̃u = 2˙̃u ˙̃v

ṽ
¨̃v = 1

ṽ
( ˙̃v

2 − ˙̃u
2
). (4.1.13)

We shall conclude this subsection with the following observation. As in theq-deformed
case (see, e.g., [19]), the first relation in equation (3.1.9) is the one whose Leibnitz rule does
not involve the coordinatev. Thus let us assume a one-dimensionalh-deformed Heisenberg
relation in theu-direction from equation (3.1.14) as follows:

[u, Pu] = ih̄ + 2hPu (4.1.14)

and choose the Hamiltonian aŝH = (P 2
u )/2m. Then the one-dimensional time-dependent

Schr̈odinger equation has a solution of the form

9(t, u) = ei(ku−ωt) (4.1.15)

provided with

ω = h̄

2m

[
1− e−2ikh

2|h|
]2

. (4.1.16)

Thus the energy depends on the parameterh explicitly, which is similar to the one-dimensional
q-deformed case [3]. However, theh dependence does not arise in this way for a free particle
on theh-deformed quantum plane. We investigate theh dependence of the energy spectra for
some bound states in the following subsections.

4.2. Motion under an oscillator-like potential

Let us consider a physical system with a Hamiltonian

Ĥ = − h̄
2

2m
v2
(
∂2
u + ∂2

v

)
+ v2

(
A + 1

2mω
2v2
)

(4.2.1)

for some constantsA,ω. The potential is sometimes called oscillator like [9]. As in the
free-particle case, we put

Ĥg(v)f (u) = Eg(v)f (u) (4.2.2)

and decompose it into two differential equations

∂2
uf (u) = −C2f (u) (4.2.3)

and

v2 ∂2
v g(v)− (av2 + bv4 + λ)g(v) = 0 (4.2.4)
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where

a = C2 +
2m

h̄2 A b =
(
mω

h̄

)2

λ = −2m

h̄2 E. (4.2.5)

The differential equation foru in (4.2.3) has a solution given by equation (4.1.8) withC in
(4.1.9). If we puty = v2, then from equation (4.2.4) we obtain

4y2 d2g

dy2
+ 2y

dg

dy
− (ay + by2 + λ

)
g = 0. (4.2.6)

Moreover, if we putg = y−1/4φ(y), then we have

y2 d2φ(y)

dy2
− 1

4

(
ay + by2 + λ− 3

4

)
φ(y) = 0. (4.2.7)

Now let us writeφ(y) as the following form:

φ(y) = yβ e−Kyξ(2Ky). (4.2.8)

Then equation (4.2.7) becomes a Laguerre differential equation forz = 2Ky

zξ ′′(z) + (2β − z)ξ ′(z) +

(
− a

8K
− β

)
ξ(z) = 0 (4.2.9)

if β andK(K > 0) satisfy
1
4

(
λ− 3

4

) = β(β − 1) K2 = 1
4b. (4.2.10)

Thus bound state solutions are obtained by the associated Laguerre polynomials

ξ(z) = L(ν)n (z) (4.2.11)

with

ν + 1= 2β > 0 n = − a

8K
− β (4.2.12)

whereA should be negative enough such thata < 0 for the existence of bound states. If we
putVh = (h̄2/2m)a, that is

Vh = − h̄
2

2m

[
1− e−2ikh

2h

]2

+A (4.2.13)

then we have up to constant multiplication

g(v) = v|Vh|/h̄ω−2n−1/2 exp

[
−mω

2h̄
v2

]
L(|Vh|/h̄ω−2n−1)
n

(
mω

h̄
v2

)
(4.2.14)

with the energy eigenvalues

En = h̄2

8m
− h̄2

2m

( |Vh|
h̄ω
− 2n− 1

)2

(4.2.15)

for n = 0, 1, . . . , NM < |Vh|/2h̄ω. The interpretation of this result in the commutative limit
is made in [9]. On theh-deformed quantum plane, not only the energy eigenvalues but also the
number of bound states depend explicitly on the deformation parameterh. In particular, we
note thata cannot be less than 0 whenk→∞ in the commutative limit and thus bound states
cannot exist. However, for someh, C2→−1/4h2 whenk→∞ and hence bound states can
still exist whenever suchh satisfies

A <
h̄2

8mh2
. (4.2.16)
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4.3. Motion under a Coulomb-like potential

Now we consider a particle under a Coulomb-like potential [9] with a Hamiltonian

Ĥ = − h̄
2

2m
v2
(
∂2
u + ∂2

v

)
+ v2

(
A +

B

2m
v−1

)
(4.3.1)

for some constantsA andB. As in the previous subsection, we decompose the Schrödinger
equation into two differential equations

∂2
uf (u) = −C2f (u) (4.3.2)

and

v2 ∂2
v g(v)− (av + bv2 + λ)g(v) = 0 (4.3.3)

where

a = B

h̄2 b = C2 +
2m

h̄2 A λ = −2m

h̄2 E. (4.3.4)

As before, we put

g(v) = vβ e−Kvξ(2Kv). (4.3.5)

Then we have a Laguerre differential equation again forz = 2Kv

zξ ′′(z) + (2β − z)ξ ′(z) +

(
− a

2K
− β

)
ξ(z) = 0 (4.3.6)

if β andK(K > 0) satisfy

λ = β(β − 1) K2 = b. (4.3.7)

Thus bound state solutions are also obtained by the associated Laguerre polynomials

ξ(z) = L(ν)n (z) (4.3.8)

with

ν + 1= 2β > 0 n = − B

2Kh̄2 − β. (4.3.9)

HereB should be less than 0 andA should be such thatK > 0 for the existence of the bound
states. If we putVh = (h̄2/2m)C2 +A, then we have up to constant multiplication

g(v) = v|B|/(2h̄
√

2mVh)−n exp

[
−
√

2mVh
h̄

v

]
L(|B|/(h̄

√
2mVh)−2n−1)

n

(
2

√
2mVh
h̄

v

)
(4.3.10)

with the energy eigenvalues

En = h̄2

8m
− h̄2

2m

( |B|
2h̄
√

2mVh
− n− 1

2

)2

(4.3.11)

for n = 0, 1, . . . , NM < |B|/(2h̄√2mVh). Not only the energy eigenvalues but also the
number of bound states depend on the deformation parameterh as in the previous oscillator-
like potential case. In particular, no bound states can exist in the commutative limit when
k→∞ sinceVh→∞. However, bound states can still exist for someh satisfying

A >
h̄2

8mh2
. (4.3.12)
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5. Conclusions

On theh-deformed quantum plane, we have constructed theh-deformed Heisenberg algebra
that is covariant under the quantum groupGLh(2). It is worth comparing it with the deformed
Heisenberg algebra constructed by Aghamohammadi [1], which is not covariant under the
quantum group. We have also constructed the Laplace–Beltrami operator on the quantum
plane. This operator has the Laplace–Beltrami operator of the Poincaré half-plane as its
commutative limit.

We have introduced the Schrödinger equations for a free particle and particles under
two specific potentials on the quantum plane and find their solutions explicitly by taking
values in the noncommutative algebra. In the commutative limit the behaviour of a quantum
particle on the quantum plane becomes that of the quantum particle on the Poincaré half-
plane, a surface of constant negative Gaussian curvature. One usually expects that the
energy spectra would depend on the parameterh explicitly at ‘large’ momentum and this
is the case for the two specific potentials in this work. Moreover, it has been shown that
bound states can survive on the quantum plane in a limiting case where bound states on the
Poincaŕe half-plane disappear. The bound state solutions for the two potentials are alike since
the corresponding Schrödinger equations can be reduced to the differential equation for the
confluent hypergeometric functions.
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