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Abstract. We find the covariant deformed Heisenberg algebra and the Laplace—Beltrami operator
on the extended-deformed quantum plane and solve the 8dimger equations explicitly for

some physical systems on the quantum plane. In the commutative limit the behaviour of a quantum
particle on the quantum plane becomes that of the quantum particle on the Bdiatfgslane, a

surface of constant negative Gaussian curvature. We show that the bound state energy spectra for
particles under specific potentials depend explicitly on the deformation paraiméireover, it

is shown that bound states can survive on the quantum plane in a limiting case where bound states
on the Poinca half-plane disappear.

1. Introduction

In recent years, quantum groups and quantum spaces have attracted much attention from both
physics and mathematics [6, 15, 18]. They are of relevance to the problem of the quantization
of spacetime. Quantum spaces are often adopted as models for the microscopic structure of
physical spacetime and their effects on physics have been investigated by many authors. In
particular,g-deformed quantum spaces are one of those quantum spaces whose effects have
been intensively studied (see, e.g., [2, 8, 13]).

The purpose of this work is to make a formulation of quantum mechanics oh-the
deformed quantum plane and to investigate the effects of the quantum plane on the energy
spectra. Thé:-deformed quantum plane [1, 7,12] is a counterpart ofgtfteformed one in
the set of quantum planes which are covariant under those quantum deformat@hs2f
which admit a central determinant. It seems that it has more geometrical structures than the
g-deformed one. Thé-deformed quantum plane is known to be a noncommutative version
of the Poincag half-plane and its geometry has been discussed in [5].

In section 2, we review the geometry of thedeformed quantum plane which is to be
used later. In section 3, thedeformed Heisenberg algebra is constructed from the skew
derivatives of Wess—Zumino. This algebra is covariant under the quantum Goy2). Itis
worthy of being compared with the deformed Heisenberg algebra used by Aghamohammadi
[1], which is not covariant under the quantum group. Also it is comparable with the deformed
Heisenberg algebra, for example, by Lorekal [13], which has no such quantum group
symmetry because there is none compatible with the reality condition. We also construct the
Laplace—Beltrami operator on the quantum plane. The operator has the Laplace—Beltrami
operator of the Poincarhalf-plane as its commutative limit. In section 4, we construct
the Schoédinger equations for some physical systems on the quantum plane and find their
solutions explicitly, taking values in the noncommutative algebra. In the commutative limit
the behaviour of a quantum particle on the quantum plane becomes that of the quantum particle
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on the Poinca half-plane, a surface of constant negative Gaussian curvature. The bound state
energy spectra for particles under specific potentials are shown to depend explicitly on the

deformation parametér. This result is comparable with that of [3]. Moreover, it is shown

that bound states can survive on the quantum plane in a limiting case where bound states on
the Poincag half-plane disappear.

2. The h-deformed quantum plane

2.1. The covariant differential structure

The h-deformed quantum plane is an associative algebra generated by noncommuting
coordinatesc andy such that

xy — yx = hy? (2.1.1)

wherenh is a deformation parameter. The quantum gr6uk, (2) is the symmetry group of
the h-deformed plane as 5L, (2) for theg-deformed quantum plane [4, 7, 12].

The covariant differential calculus on the quantum plane can be found [1] by the method
of Wess and Zumino [21]. The results to be used in this work can be summarized as follows.

The module structure of the 1-forms is given by the relations
xdx =dxx —hdxy+hdyx+h?dyy xdy=dyx+hdyy (2.1.2)
ydr=dxy—hdyy ydy=dyy o

and the structure of the algebra of forms is determined by the relations
dx? = hdxdy dxdy = —dydx dy? = 0. (2.1.3)

It is important to notice that the associative algebra generatad pjas an involution given
by x" = x, yT = y providedh € iR. The involution has a natural and simple extension to the
differential calculus and the differential is real:

dnt=drt. (2.1.4)
This is contrary to the case considered by Loetkl [13]. Dual to these forms are a set of
twisted derivations which when considered as operators satisfy the relations

[x,0,] =—-1+hyd, [x,dy] = —hx 0, — h%y 3, — hy dy

[y,0:]=0 [y, 9y] = —1+hyox (2.1.5)

[8.,8,] = h 92
In [1] the momentum operators are defined as follows:

px = —ih 9, py = —ihd,. (2.1.6)

However, if one requires that they be Hermitian, the deformed Heisenberg algebra given by
(2.1.5) does not satisfy the hermiticity. This problem of nonhermiticity has been observed by
Aghamohammadi [1]. We shall resolve it in subsection 3.1.

The extended-deformed quantum plane is an associative algebggenerated by, y
satisfying equation (2.1.1) and their inverses, y~1. The extended-deformed quantum
plane is known to be a noncommutative version of a Poitatf-plane [5]. Sinced is a
unital involution algebra withr andy Hermitian and: € iR, the elements

u=xyl+ %h v=y? (2.2.7)
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are also Hermitian. Their commutation relation becomes
[u, v] = —2hv. (2.1.8)
This choice of generators is useful in studying the commutative limit.
Now it is straightforward to see that
wdu =duu — 2h du udv=dvu —2hdv

vdu =duv vdv =dvv (2.1.9)
and

dudu =dvdv =0 du dv = —dv du. (2.1.10)
In this work, however, it is more convenient to use the ‘Stehbein’ [16].
2.2. The Stehbein
The Stehbeid“ are defined as

6t =vtdu 6% = —v1dv. (2.2.1)
Then the9* satisfy the commutation relations

fO4=04f (2.2.2)
forany f € A as well as the relations

©H?=0 0%?>=0 062 + 9201 = 0. (2.2.3)
Also we have

dot = —6%? do? = 0. (2.2.4)
Moreover, the Stehbein satisfy

6% (ep) = 8¢ (2.2.5)
if we introduce the derivations, = adx, with

AL = oY Ap = T (2.2.6)
It is easy to see that the derivations satisfy

el =v erv=0 2.2.7)

eou =0 eV = —0.
The derivationg, define, in the commutative limit, vector fields

X, = /[@06” (2.2.8)
with

X1=100; X, = —10; (2.2.9)

wherei, v are the commutative limits of the generatoys of the algebrad. The algebrad with

the differential calculus defined by the relations (2.2.3) can be regarded as a noncommutative
deformation of the Poincarhalf-plane [5]. In this case, a metric is defined on the tensor
product of the4-module of 1-forms by

g(6% ®0") = 5. (2.2.10)
The metric satisfies
g(du @ du) = g(dv ® dv) = v? g(du ® dv) = g(dv ® du) = 0. (2.2.11)

In terms of the commutative limét of the Stehbei#“, the metric is given in the commutative
limit by the line element

ds® = (697 + (%% = v 2(di® + di®) (2.2.12)
which is the metric of the Poincahalf-plane [10].
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3. The h-deformed Heisenberg algebra and the Laplace—Beltrami operator

3.1. Theh-deformed Heisenberg algebra

In this subsection, we shall construct a deformed Heisenberg algebra on the extended
deformed quantum plane. First, we shall introdaged, such that

du = d,v =1 (3.1.2)
We assume the following ansatz:

0y = (Oxu) 3, + (0,v) 9, dy = (Ayu) 9, + (3yv) By. (3.1.2)
The coefficients can be calculated using equation (2.1.5),

Ol = y_l o,v=0

Oyu = —xy2—hy?! oyv = —2y~3 (313)
and thus we have

B, = vy 9 = —3(xy* — 2hy% 8, — 1y%0,. (3.1.4)
Thena,, 9, satisfy not only equation (3.1.1) but also

d,v = d,u = 0. (3.1.5)
Now that

0,x = 2,y=0

dyx = i%(xy2 — 2hy®) avj’) =-1y° (3.1.6)
we can verify the relations

0y = (0yx) 0y + (3, y) 9y dy = (9yx) 0x + (3yy) y. (3.1.7)
Moreover, it is straightforward to see that

d=dxd,+dydy, =dud, +dvd,. (3.1.8)

From equations (2.1.5) and (3.1.7), it follows that

[u,8,] = —1+2ho, [u, 8,] = 2h0,

[v,9,]=0 [v,0,] = -1 (3.1.9)

[9u, 3,] = 0.
Now we introduce the momentum operators temporarily by

pu = —ihd, py = —ihd, (3.1.10)
then we have the following commutation relations:

[u, pu] = ih + 2hp, [u, p,] = 2hp,

[v, p.] =0 [v, pu] =R (3.1.11)

[Pus pu] = 0.

These relations satisfy the Jacobi identities. It is worth noticing that the commutation relations
are invariant under the transformation

p; = Pu p:; = Dv +avt (3.1.12)
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for any complex number. Moreover, equation (3.1.11) satisfies the hermiticity if we define
the Hermitian adjoints of the momentum operators as follows:

pi=p.  pl=potput (3.1.13)

for any complex numbes.

From now on, we choosg = 2ik in equation (3.1.13). In fact, not only does this
choice guarantee the hermiticity of the Laplace—Beltrami operator to be constructed in the next
subsection, but also it is consistent with that in the commutative limit [10, 17] once one defines
the inner product f, g) of two functions on the Poincarhalf-plane to bé f, g) = [ fedu
with the measured = -2 di di. It follows then thatp! = p; + 2k ~* and the Hermitian
momentum operator is ngt; but P; = p; + ihv~1. Similarly, the momentum operator is not
po but P, = p, +ikv~tin the quantum plane. This is not unusual either in nonflat spaces [11]
or in quantum spaces [8]. In fact, the second tern?ofeflects the nonflatness of the space.
From equation (3.1.12), it follows that the Hermitian momentum operatpts p, and P,
satisfy the following:-deformed Heisenberg algebra on thev)-quantum plane which is of
the same form as in equation (3.1.11):

[u, P,] =ih+2hP, [u, P,] = 2hP,
[v, P, ] =0 [v,P]=ih (3.1.14)
[Pus PU] = 0
In this case, the Hermitian adjoints pf andp, in equation (2.1.6) are given by
Pl = px pl = py +2hp, (3.1.15)

and the operator such as is not Hermitian, in contrast to the assumption in [1]. In fact,
the Hermitian momentum operators afg = p, and P, = p, + hp,. Now we can write
equation (2.1.5) as

[X, px] =in+ h)’Px [)C, py] = _hxpx - hzypx - hypy

[y, p:] =0 [y, py] =ik + hypx (3.1.16)

[px. py] = hp?.
Itis straightforward to see that the relations in the above equation (3.1.16) satisfy the hermiticity.
Moreover, alengthy calculation shows that they are covariant under the quantun&gte(.
Now equation (3.1.16) yields immediately thedeformed Heisenberg algebra on the y)-
quantum plane

[x,P]=ih+hyP, [x, P,] = ihh — hx P, + h?y P, — hyP,

[y, ] =0 ly, P,] =ik +hyP, (3.1.17)

[P., P,)] = hPZ.
From the covariance of equation (3.1.16) it follows easily that this deformed Heisenberg

algebra is also covariant under the quantum gr@up (2). The deformed Heisenberg algebra
is comparable with that in [1] which is not covariant under the quantum géali(2).

3.2. The Laplace—Beltrami operator

From now on, we shall concern tkw, v)-plane. From equation (2.2.3), the differential algebra
over A is the sum of4 and the4-modulesQ?!, Q2 of 1-forms and 2-forms:

QA=A Qe Q% (3.2.1)
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As in the classical geometry, we can define the star opefaini2 (A) with the metric given
in equation (2.2.10) by

1 =019 x019% =1

x0t = 62 x0% = —01. (3.2.2)
Then ford = —1,6%, we havex = —110% + 1,0 and as in classical geometry the star
operatorx satisfies

ok = (—1PE P (3.2.3)
wherep denotes the order of the form to be acted on. Now we défin@” — Q71 by

S = (=12 Iy x . (3.2.4)
From equation (2.2.4), it follows then that fgre A

152

W0 e 1 625)
Moreover, a straightforward calculation yields
8(f0%0%) = ex fO01 — e1 f0? 80 = Ao (3.2.6)
8(f0) = (erfHrr+ (e2f)Aa+ fAo 3(O0f) = rerf +Azeaf + 22 f.
If we define the Laplace—Beltrami operatdrto be

—A=38d+ds (3.2.7)
then it is easy to see that for arfye A

Af =e2f +eif +eaf. (3.2.8)
From equation (2.2.9), in the commutative limit, it follows thagoes over to

A =1%(97 +32) (3.2.9)

which is the Laplace—Beltrami operator on the Poiadaalf-plane [10]. Thus this result is
consistent with that of [5] that the extendedleformed quantum plane is a noncommutative
version of the Poincérhalf-plane, a surface of constant negative Gaussian curvature.

Now we claim that the operatoeg ande, are nothing buv 9, and—v a,,, respectively.
In fact, the first claim can be seen from mathematical induction together with the following
observations:

el = v o, u elu_l =v Buu_l
3.2.10
e1v = v 0,V elv_l = auv_l ( )
and
_ 1 -1
a@f) =vawf) e f)=vo,tf) (3.211)

e1(vf) = v 3, (vf) el ) =vd, @t

where we have used the identity thatf = u=>f + 1 d, ™ 1f) — 21 3, (w1 f). Similarly,
the second claim can also be proved.
Moreover, from the above claims it follows that

1
A =207 +00) = =0 (P + P, (3.2.12)

It is straightforward to see that is Hermitian for the choice g8 = 2i% in equation (3.1.13).
Moreover, the Laplace—Beltrami operatrcan be written as

1
A=——209,/l¢glg"" a, (3.2.13)
Vgl *
as expected, wherg"’ = g(du" ® du") for u* = (u, v) and|g| = det(g,,).
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4. Quantum mechanics on the quantum plane

4.1. Free particles

Now we shall discuss quantum mechanics on/kaeformed quantum plane. We assume
[14, 17] that the Sclidinger equation of a particle with magsin a potentialV is given by

ino,V =HWV (4.1.1)

whereH = —(R?/2m)A+V (u, v) and timer is regarded as an extra commuting coordinate. As
in the commutative case, itis enough to find the solutions of the time-independeatBcjar
equation.
First let us solve the time-independent Sitinger equation of a free particle of mass
EZ
—— AV (u,v) = EV(u,v). (4.1.2)
2m

Let us put¥ (u, v) = g(v) f(u) andr = —2mE /h?. Then we have
V202 +02) g(v) f (u) = Ag(v) f (u). (4.1.3)

We can decompose this equation into two equations without difficulty using the relations in
equations (3.1.5) and (3.1.9)

2 f (u) = —C?f (u) (4.1.4)
and
v20%g(v) = (C2% +1)g(v) (4.1.5)

whereC is a constant. In the case whén= 0, it follows that up to constant multiplication
f = 1and for any numbet # 0

gw) =" (4.1.6)

with E = —h%a(a — 1)/2m. However, this solution is not normalizable in the commutative
limit. Thus we suppose th& # 0. From the commutation relations in equation (3.1.9), it
follows that for any constant
1—e2h
0, " = ——— ¢ 4.1.7
o (4.1.7)

where é" = 1+qu + %(au)z +...is aformal power series. Thus the solution of the equation
in (4.1.4) is given by

fu) = ek (4.1.8)
with

2|h|

which goes over ta? in the commutative limith — 0. On the other hand, since

the commutation relations betweend, and v, 9; are of the same form, we can regard
equation (4.1.5) as an ordinary differential equation although the solutions of the quantum
plane are formal. Let = —«2 — 1. Now, if we putz = iCv andg(v) = /z¢(2), then the
equation (4.1.5) becomes the Bessel differential equation

__2j 2
Cc? = [ﬂ} (4.1.9)

2

1
¢"(2) + Z¢/(z) + <1 + ’;—2>¢(z) =0. (4.1.10)
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Thus the solution of the differential equation in (4.1.5) is given by

g() = VvK (IC|v). (4.1.11)

The energy eigenvalues = —#%/2m)A = (R%/2m)(x* + ) for k > 0 constitute a
continuous spectrum. The largest lower bound state wits O is not allowed since the
normalized wavefunction vanishes identically in the commutative limit [10]. In the limit the
Green function is known to have a cut on the positive real axis in the complex energy plane
with a branch point aE = 71?/8m. The Bessel functions in these solutions seem to be related
to the ‘cylindrical’ topology of the Poincérhalf-plane [20].

For the classical mechanics, the equations of motion with the Hamiltonian

~2

v
H=—(P?+P? 4.1.12
5 (PL+ PY) (4.1.12)
yield the geodesic equation on the Poiréchalf-plane:
Ty .1 .
i= =@ i), (4.1.13)
v v

We shall conclude this subsection with the following observation. As igtHeformed
case (see, e.g., [19]), the first relation in equation (3.1.9) is the one whose Leibnitz rule does
not involve the coordinate. Thus let us assume a one-dimensionaleformed Heisenberg
relation in theu-direction from equation (3.1.14) as follows:

[u, P.] = i + 21 P, (4.1.14)

and choose the Hamiltonian & = (P?)/2m. Then the one-dimensional time-dependent
Schibdinger equation has a solution of the form

W(t, u) = koD (4.1.15)
provided with
hr1— e—2ikh 2

Thus the energy depends on the paramietplicitly, which is similar to the one-dimensional
g-deformed case [3]. However, thedependence does not arise in this way for a free particle
on thek-deformed quantum plane. We investigate fiteependence of the energy spectra for
some bound states in the following subsections.

4.2. Motion under an oscillator-like potential

Let us consider a physical system with a Hamiltonian
H= —2—v2(82 + 83) + vz(A + %ma)zvz) (4.2.1)
m

for some constantd, w. The potential is sometimes called oscillator like [9]. As in the
free-particle case, we put

Hg() f(u) = Eg(v) f(u) (4.2.2)
and decompose it into two differential equations
02 f(u) = —C?f () (4.2.3)

and
v? 85g(v) — (@?+bv*+21)g(v) =0 (4.2.4)
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where

2m mw\ > 2m
2
The differential equation for in (4.2.3) has a solution given by equation (4.1.8) withn
(4.1.9). If we puty = v?, then from equation (4.2.4) we obtain

d’g dg
4y2 =S 4 2y-2 _ +by2+))e =0. 4.2.
Y52t 2y, (ay +by*+2)g =0 (4.2.6)
Moreover, if we putg = y~4¢(y), then we have
d¢(y)
2 jyzy —Hay+by*+r—2)p(y) =0. (4.2.7)
Now let us writeg (y) as the following form:
$(y) =y e FE2Ky). (4.2.8)
Then equation (4.2.7) becomes a Laguerre differential equatian=$o2K y
a
")+ (2B - 2)E () + (‘@ - ,B)E(z) =0 (4.2.9)
if BandK (K > 0) satisfy
=3 =8p-1 K?=1b. (4.2.10)
Thus bound state solutions are obtained by the associated Laguerre polynomials
£E@) =L@ (4.2.11)
with
v+1=28>0 n:-giK—ﬂ (4.2.12)

whereA should be negative enough such that 0 for the existence of bound states. If we
putV;, = (h?/2m)a, that is

721 — e 2ikh]2
Vy=—|—| +A 4.2.13
" om [ 2h } ( )
then we have up to constant multiplication
g(v) = p!Vil/ho—2n—1/2 exp _m_‘_"vz L (Vil/ho—2n—1) @lﬁ (4.2.14)
2h " h
with the energy eigenvalues
R R (Vi 2

E,=———(|=——-2n—1 4.2.15

forn =0,1,..., Ny < |Vi4|/2hw. The interpretation of this result in the commutative limit

is made in [9]. On thé-deformed quantum plane, not only the energy eigenvalues but also the
number of bound states depend explicitly on the deformation parametarparticular, we
note that cannot be less than 0 whén— oo in the commutative limit and thus bound states
cannot exist. However, for sone C2 — —1/4h? whenk — oo and hence bound states can
still exist whenever such satisfies

2

A< ——.
= 8mh?

(4.2.16)
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4.3. Motion under a Coulomb-like potential

Now we consider a particle under a Coulomb-like potential [9] with a Hamiltonian
m m

q EQ 2(q2 2 2 B -1
H=—>-v (92 +97) +v At v (4.3.1)

for some constantd and B. As in the previous subsection, we decompose thediohger
equation into two differential equations

07 f (u) = —C2f (u) (4.3.2)
and

v? afg(v) — (av+bv2+1)g(v) =0 (4.3.3)
where

a:% b=C2+2E—n;A x:—zﬁ—";E. (4.3.4)
As before, we put

g) = v e E(2K ). (4.3.5)
Then we have a Laguerre differential equation agairx fer2Kv

") + (2B — 2)E'(2) + (—% - ﬁ)é(z) =0 (4.3.6)
if B andK (K > 0) satisfy

Ar=B8B-1) K? =b. (4.3.7)
Thus bound state solutions are also obtained by the associated Laguerre polynomials

£E@) =L () (4.3.8)
with

B

v+1=28>0 n= B. (4.3.9)

T 2KR?
Here B should be less than 0 antdshould be such tha > 0 for the existence of the bound
states. If we puv, = (h%/2m)C? + A, then we have up to constant multiplication

g(v) = v Bl/ (@ 2mVi)—n expl:_—\/zﬁmvhv} LSZ\B\/(EQth)—Zn—l) (2—"2%”‘/’71)) (4.3.10)
with the energy eigenvalues
2R |B 1\?
Eh=—-F—\————n—2 4.3.11
8n  2m <2h«/—Zth " 2) ( )

forn = 0,1,..., Ny < |B|/(2nv/2mV,). Not only the energy eigenvalues but also the
number of bound states depend on the deformation paramesem the previous oscillator-

like potential case. In particular, no bound states can exist in the commutative limit when
k — oo sinceV,, — oo. However, bound states can still exist for somngatisfying

h?

A>——.
~ 8mh?

(4.3.12)
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5. Conclusions

On theh-deformed quantum plane, we have constructeditdeformed Heisenberg algebra

that is covariant under the quantum graip, (2). Itis worth comparing it with the deformed
Heisenberg algebra constructed by Aghamohammadi [1], which is not covariant under the
guantum group. We have also constructed the Laplace—Beltrami operator on the quantum
plane. This operator has the Laplace—Beltrami operator of the Péimef-plane as its
commutative limit.

We have introduced the Sdidinger equations for a free particle and particles under
two specific potentials on the quantum plane and find their solutions explicitly by taking
values in the noncommutative algebra. In the commutative limit the behaviour of a quantum
particle on the quantum plane becomes that of the quantum particle on the Bdiatfar
plane, a surface of constant negative Gaussian curvature. One usually expects that the
energy spectra would depend on the paramktekplicitly at ‘large’ momentum and this
is the case for the two specific potentials in this work. Moreover, it has been shown that
bound states can survive on the quantum plane in a limiting case where bound states on the
Poincaé half-plane disappear. The bound state solutions for the two potentials are alike since
the corresponding Sabdinger equations can be reduced to the differential equation for the
confluent hypergeometric functions.
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